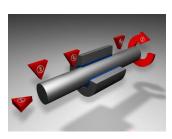
Cyberbond[®]

Cyberbond TH62 is a single component anaerobic threadlocking adhesive, which is thixotropic and develops medium to high strength. The product cures between close fitting metal parts where there is an absence of air. Prevents loosening and leaking of threaded fasteners. Suitable for heavy duty applications where high levels of shock, vibration and stress are present.

Monomer Form (Liquid)	
Monomer Base	Dimethacrylate
Colour	Red
Viscosity @ 20°C	1000 – 2000 mPa•s
Density @ 20°C	1.07 g/cm ³

Polymer Form (Solid)	
Shear Strength (DIN 54452)	18 – 30 N/mm ²
Breakloose Torque (DIN 54452)	17 – 28 Nm
Temperature Range	-50 / +150°C

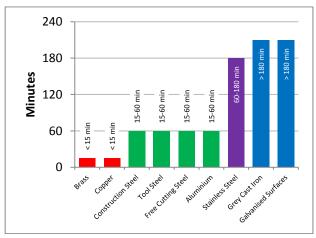

Typical Curing Properties (M10 steel nut/bolt)		
Fixture time	20 – 40 minutes	
Full cure	24 hours	
Gap Filling Capacity	0.10 – 0.25mm	
Maximum Thread	M36	

Curing Performance

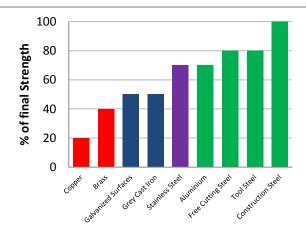
The rate of cure will depend on environmental conditions and the substrates used. The gap of the bond line will affect set speed. Smaller gaps tend to increase the speed. Activators can be applied to improve set speed but may also impair overall adhesive performance.

Different Loading Conditions

- 1. Axial Load
- Shear Strength measured in N/mm2
- 2. Torsional Load (Free Swimming)
- Break loose and prevailing torques measured in Nm. **3. Bending Load**
- 4. Radial Load

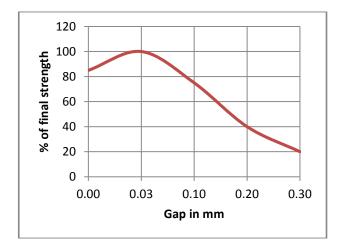

Specifications and Approvals

ISO 9001:2008, ISO/TS 16949:2009 Mil-S-46163A, Type II Grade O ASTM D-5363 AN 0331

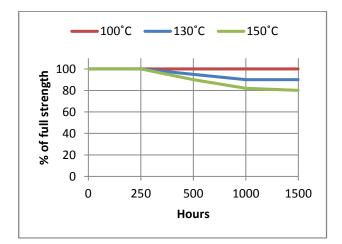

Relationship of Strength and Cure Speed

Whilst products used on active metals cure very fast, these same products when used on inactive metals need longer times to cure. Furthermore final strength values will differ depending upon the substrate being used.

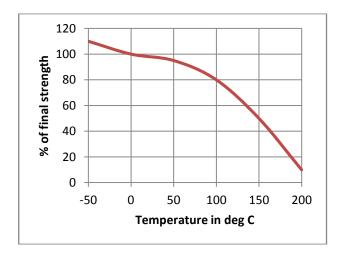
Typical Setting Time on Different Materials



Typical Shear Strength on Different Metals


Strength vrs Bond Gap

Shear Strength in relation to gap size (Tested acc. to DIN 54452; Steel)


Heat Ageing

Shear strength in relation to heat ageing at higher temperatures and measured at room temperature (Tested acc. to DIN 54452; Steel)

Hot Strength

Shear strength at different temperatures (Tested acc. to DIN 54452; Steel)

Chemical Resistance

Once cured Cyberbond Anaerobic Adhesives and Sealants are resistant against a wide range of oils, industrial solvents, and gases.

+ kerosene

+ methanol

+ mineral oil

- nitric acid

+ paraffin, liquid

- perchloric acid

- phosphoric acid

+ sulphur dioxide

+ trichloroethylene

- sulphuric acid

+ turpentine oil

+ urea, a.s.

+ natural gas

+ nitrous oxide

(up to 30 bar,

60 degrees C)

+ nitrogen

+ oxygen

ozone

+ propane

- steam

+ water

+ xylol

+ petroleum

+ styrene

+ toluol

+ perchlorethylene

+ octane

+ methylethylketone

Liquids

- aqua regia
- + aviation fuel
- barium hydroxide a.s.
- + benzene
- + benzoic acid
- + boric acid
- + brake fluid
- bromine
- + bunker fuel
- + butyl alcohol
- + butylene glycol
- + ethanol
- + ethvl acetate
- + ethyl acrylate
- + ethylene glycol
- + ethylene glyco + glycerine
- + giycerin
- + heptane
- + hydraulic oil
- + hydrogen cyanide
- hydrogen fluoride

Gases

- + acetylene
- ammonia
- + argon
- + butane
- + carbon dioxide
- + ethane
- + ethylene
- + exhaust gas
- freon gas
- + methane

(+) resistant

(-) not resistant

For chemicals not listed above please refer to full version of the Cyberbond chemical compatibility chart.

General Instructions

Surfaces to be bonded should be cleaned with Cyberbond 9999 Universal Cleaner and Degreaser or a non-oily solvent. Product should be applied in sufficient quantity to cover both surfaces. The product performs best in thin bond gaps. Very large gaps will affect the cure speed and overall strength. Good contact is essential. This product is not designed for plastics, particularly thermoplastics where stress cracking of the plastic could result. It is recommended to confirm compatibility of the product with all substrates prior to use.

Use of Activator

Cyberbond Anaerobic Adhesives and Sealants have been designed to cure rapidly and do not generally require the use of an activator. The use of Cyberbond 9190 Activator, is however, recommended under the following conditions:

- Large gaps (> 0.3mm)
- ▶ Low temperatures (<5 deg C)
- Inactive metals such as cast iron and electroplated surfaces.

Disassembly

There are two practical methods for dissolving bonded joints:

- Mechanical with appropriate hand tools (for low and medium strength products)
- Thermal by heating up the bonded joint to +250°C and disassembling while hot (for high strength products)

Storage / Shelf Life

Store unopened containers in a cool, dry place out of direct sunlight. Under these conditions the shelf life is 12 months from date of manufacture. Do not return used product to the original container as this may result in contamination. Air space in the bottle is required to keep the product liquid.

Precautions

Generally speaking Anaerobic Adhesives and Sealants can irritate or sensitize the skin. It is important to keep the workplace clean and:

- Use in well ventilated areas only
- Wear suitable safety glasses and gloves

Additional safe handling information is listed in the <u>Safety Data Sheet</u> (SDS)

Packaging

Size	Part Number
10ml Bottle	TH62010
50ml Bottle	TH62050
250ml Bottle	TH62250

Note

The data contained herein is offered in good faith based upon information that is believed to be accurate and reliable, but no warranty, express or implied, regarding the accuracy of such information is made. The conditions or methods of handling, storage, use and disposal of this product are beyond our control and may be beyond our knowledge. For this and other reasons, we do not assume responsibility and expressly disclaim liability for loss, damage or expense arising out of or in any way connected with the handling, storage, use or disposal of this product. It is the responsibility of the user to determine the products suitability for their intended purpose.

Contact

Engineering Adhesives & Lubricants (Aust) Pty Ltd Tel: (07) 5531-4242 Fax: (07) 5531-4243 Email: <u>info@eal.com.au</u> Website: <u>www.eal.com.au</u> Postal address: P.O. Box 863 Ashmore City Queensland 4214

www.eal.com.au